If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -16x2 + 32x + 7 = 0 Reorder the terms: 7 + 32x + -16x2 = 0 Solving 7 + 32x + -16x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by -16 the coefficient of the squared term: Divide each side by '-16'. -0.4375 + -2x + x2 = 0 Move the constant term to the right: Add '0.4375' to each side of the equation. -0.4375 + -2x + 0.4375 + x2 = 0 + 0.4375 Reorder the terms: -0.4375 + 0.4375 + -2x + x2 = 0 + 0.4375 Combine like terms: -0.4375 + 0.4375 = 0.0000 0.0000 + -2x + x2 = 0 + 0.4375 -2x + x2 = 0 + 0.4375 Combine like terms: 0 + 0.4375 = 0.4375 -2x + x2 = 0.4375 The x term is -2x. Take half its coefficient (-1). Square it (1) and add it to both sides. Add '1' to each side of the equation. -2x + 1 + x2 = 0.4375 + 1 Reorder the terms: 1 + -2x + x2 = 0.4375 + 1 Combine like terms: 0.4375 + 1 = 1.4375 1 + -2x + x2 = 1.4375 Factor a perfect square on the left side: (x + -1)(x + -1) = 1.4375 Calculate the square root of the right side: 1.198957881 Break this problem into two subproblems by setting (x + -1) equal to 1.198957881 and -1.198957881.Subproblem 1
x + -1 = 1.198957881 Simplifying x + -1 = 1.198957881 Reorder the terms: -1 + x = 1.198957881 Solving -1 + x = 1.198957881 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = 1.198957881 + 1 Combine like terms: -1 + 1 = 0 0 + x = 1.198957881 + 1 x = 1.198957881 + 1 Combine like terms: 1.198957881 + 1 = 2.198957881 x = 2.198957881 Simplifying x = 2.198957881Subproblem 2
x + -1 = -1.198957881 Simplifying x + -1 = -1.198957881 Reorder the terms: -1 + x = -1.198957881 Solving -1 + x = -1.198957881 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = -1.198957881 + 1 Combine like terms: -1 + 1 = 0 0 + x = -1.198957881 + 1 x = -1.198957881 + 1 Combine like terms: -1.198957881 + 1 = -0.198957881 x = -0.198957881 Simplifying x = -0.198957881Solution
The solution to the problem is based on the solutions from the subproblems. x = {2.198957881, -0.198957881}
| Y^4+9y^2+20=0 | | -6x+9x=6 | | -4x+3x=-10 | | X^2-7x-800=0 | | 7-4x=6x-23 | | -7x+3x+9=-3 | | -35=-3x+5+5x | | -7+3x+9=-3 | | m^4+m^2n^2+n^4=0 | | 7(8/5) | | a^2-b^2-10a+25= | | 8/5(7) | | 4x-3x-10=-2 | | (x^3)+6(x^2)+11x+6=0 | | x+2+x+x=6-3 | | F(x)=4x-9-x^3 | | 7k+6=69 | | 4-7(3x-1)=-4x+28 | | 127=(16*59.3/x)(16*9.9/x) | | p-8=-15/p | | -6x+7+7x=9 | | x-sqrt(11-10x)=-22 | | 10xwhat=990 | | 4x+6=4+3x | | 5t-9=31 | | 7k-5=30 | | 6a-5=43 | | -30-6a=2(1-7a) | | 7a^2-24a-4=0 | | 31+6n=-5(1-3n) | | 4(2)-3/2(1)-1 | | 2x+26=0 |